Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal CA3 pyramidal neurons.
نویسندگان
چکیده
Hippocampal neurons exhibit low-voltage-activated (LVA) and high-voltage-activated (HVA) calcium currents. We characterized the LVA current by recording whole-cell Ca2+ currents from acutely isolated rat hippocampal CA3 pyramidal neurons in 2 mM Ca2+. Long depolarizing steps to -50 mV revealed two components to the LVA current: transient and sustained. The transient phase had a fast decay time constant of 59 msec. The sustained phase persisted throughout the depolarization, even for steps lasting several seconds. The transient current was inhibited by the classic T-type channel antagonists Ni2+ and amiloride. The anticonvulsant phenytoin preferentially blocked the sustained phase, but ethosuximide had no effect. Steady-state inactivation of the transient component was half-maximal at -80 mV. Nimodipine, an L-type channel antagonist, partly inhibited the sustained current. BayK-8644, an L-type channel agonist, potentiated the sustained current. Calciseptine, another L-type channel antagonist, inhibited the sustained component. omega-Conotoxin-MVIIC, a nonselective toxin for HVA channels, had no effect on either of the LVA current components. omega-Grammotoxin-SIA, another nonselective toxin, partially inhibited the sustained component. The voltage dependence of activation of the nimodipine-sensitive current could be fit with a single Boltzmann, consistent with a homogenous population of L-type channels in CA3 neurons. Half-maximal activation of the nimodipine-sensitive current occurred at -30 mV, considerably more negative than the remaining HVA current. These results suggest that in physiologic Ca2+ more than one type of Ca2+ channel contributes to the LVA current in CA3 neurons. The transient current is carried by T-type channels. The sustained current is carried, at least in part, by dihydropyridine-sensitive channels. Thus, the designation "low-voltage-activated" should not be limited to T-type channels. These findings challenge the traditional designation of L-type channels as exclusively HVA and reveal a possible role in subthreshold Ca2+ signaling.
منابع مشابه
Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملCharacterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures
A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...
متن کاملApamin-sensitive conductance mediates the K(+) current response during chemical ischemia in CA3 pyramidal cells.
Pyramidal cells typically respond to ischemia with initial transient hyperpolarization, which may represent a neuroprotective response. To identify the conductance underlying this hyperpolarization in CA3 pyramidal neurons of rat hippocampal organotypic slice cultures, recordings were obtained using the single-electrode voltage-clamp technique. Brief chemical ischemia (2 mM 2-deoxyglucose and 3...
متن کاملPeroxisome Proliferator-activated Receptor (PPAR)-γ Modifies Aβ Neurotoxin-induced Electrophysiological Alterations in Rat Primary Cultured Hippocampal Neurons
Alzheimer’s disease (AD) is undoubtedly one of the serious and growing public health challenges in the world today. There is an unmet need for new and effective preventative and therapeutic treatment approaches for AD, particularly at early stages of the disease. However, the underlying mechanism against Aβ-induced electrophysiological alteration in cultured hippocampal pyramidal neurons is st...
متن کاملL-Type Ca Channels Mediate the Slow Ca-Dependent Afterhyperpolarization Current in Rat CA3 Pyramidal Cells In Vitro
Tanabe, Mitsuo, Beat H. Gähwiler, and Urs Gerber. L-type mediating this Ca influx in hippocampal pyramidal cells Ca channels mediate the slow Ca-dependent afterhyperpolarwere not yet identified. In various other types of neurons ization current in rat CA3 pyramidal cells in vitro. J. Neurophysiol. the Ca channels underlying the induction of the apamin80: 2268–2273, 1998. Single-electrode voltag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 18 شماره
صفحات -
تاریخ انتشار 1996